INTELIGENCIA ARTIFICIAL EN EL DERECHO AMBIENTAL: UNA PERSPECTIVA BIBLIOMÉTRICA GLOBAL

Authors

DOI:

https://doi.org/10.18623/rvd.v22.n2.3353

Keywords:

Inteligencia Artificial, Derecho Ambiental, Gobernanza Sostenible, Medio Ambiente

Abstract

El uso de la inteligencia artificial (IA) en el Derecho ambiental ha emergido como una herramienta clave para modernizar la regulación y la gobernanza ecológica. Este estudio bibliométrico analiza la evolución, tendencias y vacíos en la producción científica sobre el uso de IA como instrumento regulatorio en contextos ambientales, a partir de 63 artículos indexados en Scopus entre 2016 y 2024. Se aplicó una estrategia de búsqueda avanzada y se utilizaron indicadores como volumen de publicaciones, países, instituciones, revistas, áreas temáticas y co-ocurrencia de palabras clave. El análisis reveló un crecimiento acelerado en los últimos años, con predominio de China y Estados Unidos. Las temáticas más abordadas giran en torno a la gobernanza algorítmica, el monitoreo ambiental automatizado y la gestión de la contaminación urbana. No obstante, se identifican vacíos importantes: escasa representación de estudios empíricos, concentración geográfica de la producción, y poca reflexión crítica sobre el impacto ambiental del desarrollo de la propia IA. Se concluye que, para avanzar hacia una regulación ambiental digital justa y sostenible, es necesario fortalecer los marcos normativos, ampliar la inclusión regional y fomentar investigaciones interdisciplinarias.

References

Bibri, S. E., Huang, J., & Krogstie, J. (2024). Artificial intelligence of things for synergizing smarter eco-city brain, metabolism, and platform: Pioneering data-driven environmental governance. Sustainable Cities and Society, 108. https://doi.org/10.1016/j.scs.2024.105516

Camastra, F. D., & González, R. (2025). Artificial intelligence, sustainability and environmental impact. A narrative and bibliometric study. Región Científica. https://doi.org/10.58763/rc2025355

Camilleri, M. A. (2024). Artificial intelligence governance: Ethical considerations and implications for social responsibility. Expert Systems, 41(7). https://doi.org/10.1111/exsy.13406

Francisco, M., & Linnér, B. O. (2023). AI and the governance of sustainable development. An idea analysis of the European Union, the United Nations, and the World Economic Forum. Environmental Science and Policy, 150. https://doi.org/10.1016/j.envsci.2023.103590

Garske, B., Bau, A., & Ekardt, F. (2021). Digitalization and ai in European agriculture: A strategy for achieving climate and biodiversity targets? Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094652

Hino, M., Benami, E., & Brooks, N. R. (2018). Machine learning for environmental monitoring. Nature Sustainability, 1(10), 583–588. https://doi.org/10.1038/s41893-018-0142-9

Huda, M., Awaludin, A., & Siregar, H. K. (2024). Legal Challenges in Regulating Artificial Intelligence: A Comparative Study of Privacy and Data Protection Laws. International Journal of Social and Human, 1(2), 116–125. https://doi.org/10.59613/g8dc9v94

Khajeh, S., & Nouhi, N. (2023). The Environmental Impacts of AI and Digital Technologies. AI and Tech in Behavioral and Social Sciences, 1(4), 11–18. https://doi.org/10.61838/kman.aitech.1.4.3

Lesnikowski, A. C., Belfer, E., Rodman, E., Smith, J., Biesbroek, R., Wilkerson, J. D., Ford, J. D., & Berrang-Ford, L. (2019). Frontiers in data analytics for adaptation research: Topic modeling. Wiley Interdisciplinary Reviews: Climate Change, 10(3). https://doi.org/10.1002/wcc.576

Niazi, S. K. (2025). Regulatory Perspectives for AI/ML Implementation in Pharmaceutical GMP Environments. Pharmaceuticals, 18(6), 901. https://doi.org/10.3390/ph18060901

OECD. (2023). The State of Implementation of the OECD AI Principles: Four Years On. OECD. https://www.oecd.org/content/dam/oecd/en/publications/reports/2023/10/the-state-of-implementation-of-the-oecd-ai-principles-four-years-on_b9f13b5c/835641c9-en.pdf

Pagallo, U. (2025). On Twelve Shades of Green: Assessing the Levels of Environmental Protection in the Artificial Intelligence Act. Minds and Machines, 35(1), 10. https://doi.org/10.1007/s11023-025-09713-4

Pagallo, U., Ciani Sciolla, J., & Durante, M. (2022). The environmental challenges of AI in EU law: lessons learned from the Artificial Intelligence Act (AIA) with its drawbacks. Transforming Government: People, Process and Policy, 16(3), 359–376. https://doi.org/10.1108/TG-07-2021-0121

Song, J., Chen, Y., & Luan, F. (2023). Air pollution, water pollution, and robots: Is technology the panacea. Journal of Environmental Management, 330. https://doi.org/10.1016/j.jenvman.2022.117170

Tironi, M., & Rivera, D. I. (2023). Artificial intelligence in the new forms of environmental governance in the Chilean State: Towards an eco-algorithmic governance. Technology in Society, 74. https://doi.org/10.1016/j.techsoc.2023.102264

UNESCO. (2021). Recommendation on the Ethics of Artificial Intelligence. UNESCO. https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence

Valero-Ancco, V. N., Sosa, F., Lujano-Ortega, Y., & Calderón-Quino, K. M. (2025). Global Trends in Gender Inequality in Higher Education : A Bibliometric Analysis (1993–2024). Educational Process: International Journal, 14, e2025019. https://doi.org/https://doi.org/10.22521/edupij.2025.14.19

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. https://doi.org/10.1038/s41467-019-14108-y

Wani, A. K., Rahayu, F., Ben Amor, I., Quadir, M., Murianingrum, M., Parnidi, P., Ayub, A., Supriyadi, S., Sakiroh, S., Saefudin, S., Kumar, A., & Latifah, E. (2024). Environmental resilience through artificial intelligence: innovations in monitoring and management. Environmental Science and Pollution Research, 31(12), 18379–18395. https://doi.org/10.1007/s11356-024-32404-z

Wu, T. (2023). Application and development of artificial intelligence in environmental health. Applied and Computational Engineering, 7(1), 35–40. https://doi.org/10.54254/2755-2721/7/20230335

Yin, H., Pizzol, M., Bredahl Jacobsen, J. B., & Xu, L. (2018). Contingent valuation of health and mood impacts of PM2.5 in Beijing, China. Science of the Total Environment, 630, 1269–1282. https://doi.org/10.1016/j.scitotenv.2018.02.275

Yin, K., Cai, F., & Huang, C. (2023). How does artificial intelligence development affect green technology innovation in China? Evidence from dynamic panel data analysis. Environmental Science and Pollution Research, 30(10), 28066–28090. https://doi.org/10.1007/s11356-022-24088-0

Zhao, J., & Fariñas, B. G. (2022). Artificial Intelligence and Sustainable Decisions. European Business Organization Law Review, 24(1), 1–39. https://doi.org/10.1007/s40804-022-00262-2

Zhao, J., & Gómez, B. (2023). Artificial Intelligence and Sustainable Decisions. European Business Organization Law Review, 24(1), 1–39. https://doi.org/10.1007/s40804-022-00262-2

Zhao, Q., Jiang, M., Zhao, Z., Liu, F., & Zhou, L. (2024). The impact of green innovation on carbon reduction efficiency in China: Evidence from machine learning validation. Energy Economics, 133. https://doi.org/10.1016/j.eneco.2024.107525

Published

2025-10-09

How to Cite

Valero-Ancco, V. N., Lujano-Ortega, Y., & Bustinza-Choquehuanca, S. A. (2025). INTELIGENCIA ARTIFICIAL EN EL DERECHO AMBIENTAL: UNA PERSPECTIVA BIBLIOMÉTRICA GLOBAL. Veredas Do Direito, 22(2), e3353. https://doi.org/10.18623/rvd.v22.n2.3353