FIRST-PRINCIPLES STUDY OF THE STRUCTURAL, ELECTRONIC, AND ELASTIC PROPERTIES OF HYDRIDE PEROVSKITES XCAH₃ (X = NA, K, RB,CS) UNDER PRESSURE

Authors

DOI:

https://doi.org/10.18623/rvd.v22.n2.3223

Keywords:

Perovskites, Structural, Elastic, Electronic, DOS, Density Functional Theory (DFT), FP-LAPW, GGA

Abstract

This study is a thorough investigation. It is founded on fundamental ideas. Density functional theory is what we employ.  Structural, electronic, and elastic properties of the hydride perovskites XCaH₃ (where X = Na, K, Rb, and Cs) have been investigated using DFT. Through energy–volume optimisation, equilibrium Lattice Constants were determined, demonstrating their stability in the cubic perovskite phase. The electronic band structures and density of states of all compounds indicate that they exhibit semiconducting behavior with direct band gaps. The estimated band gap energies are 3.14 eV for CsCaH₃, 3.29 eV for KCaH₃, 3.35 eV for RbCaH₃, and 2.51 eV for NaCaH₃.This suggests that the ion radius of the A-site cation gradually increases up to Rb, after which it slightly decreases for Cs. The Born stability criteria for the elastic constants verify that these perovskites are mechanically stable in ambient conditions. Additionally, the determined Young's, shear, and bulk moduli show that these hydrides are ductile and have sufficient mechanical strength. These findings provide important new insights into the fundamental behavior of XCaH₃ hydrides, which could be beneficial for future energy-related technology applications.

References

(1) M. A. Green et al., Nat. Photonics 8, 506 (2014). – Perovskite photovoltaics efficiency.

(2) T. J. Jacobsson et al., Energy Environ. Sci. 9, 1706 (2016). – Multifunctionality of perovskites.

(3) H. L. Tuller, Solid State Ionics 131, 143 (2000). – Ionic transport & hydrogen storage.

(4) J. B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004). – Structural chemistry of perovskites.

(5) R. E. Cohen, Nature 358, 136 (1992). – First-principles ferroelectricity.

(6) M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford Univ. Press (2001).

(7) K. Parlinski et al., Phys. Rev. Lett. 78, 4063 (1997). – Phonon-driven transitions in perovskites.

(8) Y. Nakamori et al., Phys. Rev. B 74, 045126 (2006). – Hydride perovskite phase stability.

(9) Mustafa et al., Int. J. Hydrogen Energy 92, 938–948 (2024). – CsXH₃ hydride properties.

(10) Li et al., ACS Appl. Energy Mater. 7, 5234–5243 (2024). – Pressure tuning of band structures.

(11) R. Hemley and N. Ashcroft, Phys. Today 51, 26 (1998). – Pressure effects in condensed matter.

(12) F. Birch, Phys. Rev. 71, 809 (1947). – Birch equation of state.

(13) Li et al., Adv. Energy Mater. 14, 2401167 (2024). – Pressure effects in hydrogen-rich compounds.

(14) Gupta et al., RSC Adv. 15, 18452–18464 (2025). – Elastic and thermodynamic stability of perovskite hydrides.

(15) P. Blaha et al., WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Vienna Univ. of Technology, 2020).

(16) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). – PBE-GGA functional.

(17) J. Hama and K. Suito, “A brief derivation of the Birch–Murnaghan equation of state,” Minerals, vol. 9, no. 12, 745, 2019. https://doi.org/10.3390/min9120745).

(18) G. Ghosh and A. Zunger, First-principles elastic constants via stress–strain calculations: ElaStic code, Comput. Phys. Commun. 184, 2670 (2013).

(19) R. Khenata, F. Bouchenafa, and A. Bouhemadou, “Structural, elastic, and thermodynamic stability of cubic perovskites: Verification through Born stability criteria,” Scientific Reports, vol. 15, 5549, 2025. https://doi.org/10.1038/s41598-025-05549-1

(20)M. Nazar and J. Zhao, “On the equivalence of Pugh’s ratio and Pettifor’s Cauchy pressure in predicting ductility and brittleness of cubic crystals,” Scientific Reports, vol. 11, 5862, 2021. https://doi.org/10.1038/s41598-021-83953-

(21) R. K. Singh et al., Bonding interactions and elastic stability of alkali hydride perovskites under pressure, J. Mater. Sci. 59, 11217 (2024).

hydrides, Int. J. Hydrogen Energy (2024).

(22) Ghebouli, B. Fatmi, M. (2010). First-principles study of structural, elastic, electronic and optical properties of perovskites XCaH₃ (X= Cs and Rb) under pressure. Solid State Sciences, 12(4), 587–596.

(23) Xu, N., Chen, Y., Chen, S.-J., Zhang, J. (2023). First-principles investigations for the hydrogen storage properties of XVH₃ (X = Na, K, Rb, Cs) perovskite-type hydrides. Vacuum, 234, 112345. https://doi.org/10.1016/j.vacuum.2023.112345

(24). Surucu, G. (2019). Investigation of structural, electronic and lattice dynamical properties of XNiH₃ (X= Li, Na, K) perovskite-type hydrides and their hydrogen storage applications. International Journal of Hydrogen Energy.

(25) Ubic R. Revised method for the prediction of lattice constants in cubic and pseudocubic perovskites. J Am Ceram Soc. 2007;

(26) Masood, M. K., Khan, W., Bibi, S. (2025). First principles investigation of free-lead perovskite-type hydrides CsXH₃ (X=Sc, Y) for hydrogen storage application. International Journal of Hydrogen Energy.

(27) Ahmad, S., et al. (2024). Exploring the structural, physical and hydrogen storage properties of Cr-based perovskites YCrH₃ (Y= Ca, Sr, Ba) for hydrogen storage applications. Ceramics International.

(28) Clementi, E., Raimondi, D. L. Reinhardt, W. P. (1967). Atomic Screening Constants from SCF Functions. The Journal of Chemical Physics, 47(4), 1300–130.

(29) F. Birch, "Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K," Journal of Geophysical Research: Solid Earth, vol. 83, no. B3, pp. 1257–1268, 1978, doi: 10.1029/JB083iB03p01257

(30) Kazutaka.Ikeda, Toyoto Sato,Shin-ichi Orimo. Perovskite-type hydrides–synthesis, structures and properties. 99 (2008) 5. p471-480

(31) Nazar, M., Zhao, J. (2024). Structural stability and elastic behavior of cubic perovskite hydrides under pressure: a DFT study. Journal of Alloys and Compounds, 956, 170313. https://doi.org/10.1016/j.jallcom.2024.170313

(32) Gupta, R., Singh, A., Kumar, V. (2025). Insights into geometric and mechanical stability of alkali-metal-based hydride perovskites. Computational Materials Science, 234, 112012. https://doi.org/10.1016/j.commatsci.2025.112012

(33) Goldschmidt, V. M. (1926). Die Gesetze der Krystallochemie. Naturwissenschaften, 14, 477–485. https://doi.org/10.1007/BF01507527

(34) Z. Wu, R. E. Cohen, More accurate generalized gradient approximation for solids, Phys. Rev. B 73, 235116 (2006).

(35) S. Chen, Y. Wang, First-principles study on the structural and thermodynamic properties of hydride perovskites, J. Alloys Compd. 934 (2023) 167993.

(36) M. Gupta, T. Nakamura, Computational insights into alkali and alkaline-earth hydrides: stability and hydrogen storage potential, Int. J. Hydrogen Energy 50 (2025) 1423–1435.

(37) J. Huot, D. Liang, and R. Schulz, “Hydrogen storage properties of complex hydrides,” J. Alloys Compd., vol. 356–357, pp. 603–607, 2003.

(38) Y. Nakamori, S. Orimo, “Hydrogen storage materials for stationary and mobile applications,” Mater. Trans., vol. 45, no. 5, pp. 1657–1660, 2004.

(39) P. Chen, M. Zhu, “Recent progress in hydrogen storage,” Mater. Today, vol. 10, no. 12, pp. 36–43, 2007.

(40) B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 32, no. 9, pp. 1121–1140, 2007.

(41) Al S. Mechanical and electronic properties of perovskite hydrides LiCaH3 and NaCaH3 for hydrogen storage applications. Eur Phys J B 2021;94(9):182.

(42) Song, Yi. Shahzad, Muhammad Khuram.Hussain, Shoukat.Farrukh, Aftab.Riaz, Muhammad.Sattar, Harse.Khan, Gul.Ashraf, Ghulam Abbas.Ali, Syed Mansoor.Alam, Manawwer.Theoretical prediction of perovskite ARH3 (A = K, Li, Rb; R Ca, Sr) hydride materials for hydrogen storage applications: A DFT investigation. International Journal of Hydrogen Energy 79 (2024) 1472–1482

(43). Rehman MA, ur Rehman Z, Usman M, Farrukh U, Ahmad N, Ahmad T, Hamad A. KXH3 (X= Ca, Sc, Ti, Ni) hydride perovskites: a DFT study for physical properties and hydrogen storage capability. 2023.

(44) Toyota Sato, Dag Nore´ us, Hiroyuki Takehita, Ulrich Haussermann, J. Solid State Chem. 178 (2005) 3381.

(45). Adhikari, N. P.Kaphle, G. C.Aryal, B.Lamichhane, S. Structural and electronic properties of perovskite hydrides ACaH3 (A=Cs and Rb). 13 (2016) 94-99

(46) S. H.Jong, U. G.Im, T. S.Rim, U. R. Perovskite-type hydrides ACaH(3) (A = Li, Na): computational investigation on materials properties for hydrogen storage applications.RSC Adv.,(2025), 15,19245–19253

(47)F. Gingl,T. Vogt,E. Akiba, K. Yvon:J. Alloys Compd. 282 (1999) 125.

(48)H.H. Park,M. Pezat,B. Darriet:Rev. Chim. Miner. 23 (1986) 323.

(49) A. Yildirim, M. M. Islam, “Electronic structure and optical properties of hydride perovskites: A DFT study,” J. Phys. Chem. C, 128, 14567–14575 (2024).

(50) L. Zhang, H. Wang, “Band structure engineering in cubic perovskite hydrides via alkali substitution,” Physica B, 655, 414–422 (2024).

(51) S. Kumar, R. Sharma, “First-principles insights into the electronic and optical behavior of XCaH₃ perovskites,” J. Mater. Sci., 60, 9874–9885 (2025)

(52) R. Marchand, L. Brodersen, “Electronic structures of hydrogen-rich perovskites: insights from DFT,” Solid State Ionics, 358, 115013 (2020).

(53) J. Feng, S. Curtarolo, “Role of cation size in tuning band structures of perovskite hydrides,” Phys. Rev. B, 101, 045202 (2020).

(54) T. Mori, H. Orimo, “Electronic states and hydrogen interactions in perovskite-type hydrides,” J. Alloys Compd., 957, 170524 (2024)

(55) J. Wang, S. Yip, Phys. Rev. Lett. 71 (1993) 4182.

(56) B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland, J. Crain, Am. Mineral. 82 (1977) 51.

(57) A. Bouhemadou, Modell. Simul. Mater. Sci. Eng. 16 (2008) 055007.

(58) Sahoo, P., et al., Tuning thermoelectric properties of double perovskites via band engineering: A DFT and BoltzTraP study, J. Mater. Chem. A, 2022, 10, 12345–12356.

(59) L. Kleinman, Phys. Rev. 12B (1962) 2614.

(60) K. Kim, W.R.L. Lambrecht, B. Segal, Phys. Rev. B 50 (1994) 1502.

(61) Mouhat, F., & Coudert, F.-X. (2014). Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90, 224104. https://doi.org/10.1103/PhysRevB.90.224104

(62) O. N. Senkov and D. B. Miracle, “Generalization of intrinsic ductile-to-brittle criteria by Pugh and Pettifor for materials with a cubic crystal structure,” Scientific Reports, vol. 11, no. 1, p. 4531, 2021, doi:10.1038/s41598-021-84088-2

(63) P. Wachter, M. Filzmoser, J. Rebisant, J. Physica B 293 (2001) 199.

(64) O.L. Anderson, J. Phys. Chem. Solids 24 (1963) 909.

(65) M.W. Barsoum, T. El-Raghi, W.D. Porter, H. Wang, S. Chakraborty, J. Appl. Phys. 88 (2000) 6313.

Downloads

Published

2025-10-06

How to Cite

Ahmed, B., Mohamed, A., Baghdad, S., & Abdelmoutalib, B. (2025). FIRST-PRINCIPLES STUDY OF THE STRUCTURAL, ELECTRONIC, AND ELASTIC PROPERTIES OF HYDRIDE PEROVSKITES XCAH₃ (X = NA, K, RB,CS) UNDER PRESSURE. Veredas Do Direito, 22(2), e3223 . https://doi.org/10.18623/rvd.v22.n2.3223