BIBLIOMETRIC ANALYSIS OF DIGITAL HUMANITIES RESEARCH: INSIGHTS FROM SCOPUS DATABASE STUDIES (2005–2025)

ANÁLISE BIBLIOMÉTRICA DA PESQUISA EM HUMANIDADES DIGITAIS: PERCEPÇÕES DE ESTUDOS DE BASE DE DADOS SCOPUS (2005–2025)

Article received on: 7/18/2025 Article accepted on: 9/19/2025

Nguyen Van Chieu*

*VNU University of Social Sciences and Humanities, Hanoi, Vietnam Orcid: https://orcid.org/0009-0007-4244-6835 ngocnganchieu@gmail.com

Hoang Thanh Lich*

*VNU University of Social Sciences and Humanities, Hanoi, Vietnam Orcid: https://orcid.org/0009-0009-2644-5650 tlich1996@gmail.com

Thang The Nguyen*

*VNU University of Social Sciences and Humanities, Hanoi, Vietnam Orcid: https://orcid.org/0000-0002-3998-0099 thangvel@gmail.com

The authors declare that there is no conflict of interest

Abstract

This study offers a bibliometric analysis of research in digital humanities, utilizing data from the Scopus database spanning 2005 to 2025. The analysis looks at publication trends, sources, authorship, geographic distribution, funding sponsors, and document types to show how this interdisciplinary field is changing over time. The results show that scholarly output slowly grew from 2005 to 2017, then jumped up sharply in 2019. Peer-reviewed outputs are the most common type of publication, showing that the field relies on both traditional humanities dissemination and technical exchanges. Digital Scholarship in the Humanities and Lecture Notes in Computer Science are two of the most important publications in the field. Authorship is somewhat spread out, with input from a wide range of scholars. The United States is the biggest contributor, followed by Australia, India, and the United Kingdom. Funding comes from both international and national agencies, which shows that policymakers recognize the value of digital humanities research. All of these results show how digital humanities has grown in a dynamic and interdisciplinary way over the past 20 years and give us an idea of where it will go in the future to connect technology and cultural scholarship.

Resumo

Este estudo oferece uma análise bibliométrica da pesquisa em humanidades digitais, utilizando dados da base de dados Scopus, abrangendo o período de 2005 a 2025. A análise analisa tendências de publicação, fontes, autoria, distribuição geográfica, patrocinadores de financiamento e tipos de documentos para mostrar como esse campo interdisciplinar está mudando ao longo do tempo. Os resultados mostram que a produção acadêmica cresceu lentamente de 2005 a 2017, com um aumento acentuado em 2019. Publicações revisadas por pares são o tipo mais comum de publicação, o que demonstra que o campo depende tanto da disseminação tradicional das humanidades quanto de intercâmbios técnicos. Digital Scholarship in the Humanities e Lecture Notes in Computer Science são duas das publicações mais importantes na área. A autoria é relativamente dispersa, com contribuições de uma ampla gama de acadêmicos. Os Estados Unidos são o maior contribuinte, seguidos pela Austrália, Índia e Reino Unido. O financiamento vem de agências internacionais e nacionais, o que demonstra que os formuladores de políticas reconhecem o valor da pesquisa em humanidades digitais. Todos esses resultados demonstram como as humanidades digitais cresceram de forma dinâmica e interdisciplinar

Keywords: Digital Humanities. Bibliometrics. Scopus. Publication Trends. Interdisciplinary Research. Knowledge Production.

nos últimos 20 anos e nos dão uma ideia de onde elas caminharão no futuro para conectar tecnologia e estudos culturais.

Palavras-chave: Humanidades Digitais. Bibliometria. Scopus. Tendências de Publicação. Pesquisa Interdisciplinar. Produção de Conhecimento.

1 INTRODUCTION

Digital humanities (DH) seems to be a new and exciting field that combines computer science with traditional humanities research. It opens up new ways to analyze, preserve, and understand cultural and historical data. Over the last twenty years, the digital humanities have grown alongside new technologies and the increasing digitization of scholarly resources. This has changed how researchers study history, literature, linguistics, and cultural studies (Schreibman, Siemens, & Unsworth, 2016). Digital humanities (DH) is a novel approach that combines tools from computer science, data visualization, and digital archiving (Berry & Fagerjord, 2017). Bibliometric analysis offers a significant perspective for assessing the intellectual framework and evolution of digital humanities due to its dynamic characteristics. Bibliometrics enables researchers to identify trends and establish new research priorities by examining factors such as publication patterns, citation networks, authorship collaborations, and geographic distribution (Donthu et al., 2021). The Scopus database, which has a lot of peer-reviewed literature, is a strong base for this kind of analysis because it lets scholars systematically look at the scholarly output in DH over time. This study examines the bibliometric attributes of digital humanities research from 2005 to 2025, utilizing Scopus-indexed publications. It aims to reveal trends in publication growth, prevalent document types, significant authors, institutional and geographical contributions, and funding environments. The article not only shows how DH scholarship has changed over time, but it also gives researchers an idea of how the field has grown and changed, which is similar to how academic communication and interdisciplinary collaboration have changed in general.

Over the past twenty years, the field of digital humanities (DH) has grown a lot. This is because an increasing number of computational methods are being employed in the humanities. Bibliometric analyses, especially those utilizing the Scopus database,

have elucidated publication trends, authorship networks, and thematic developments. Research in digital humanities has been steadily growing since 2005, with big jumps after 2010. This rise corresponds with progress in digital infrastructures, open-access publishing, and interdisciplinary collaborations between computer science and the humanities (Zakaria et al., 2025). Bibliometric mapping shows that the most productive countries are mostly in Europe and North America. However, recent work from Asia, especially China and India, shows how DH scholarship is becoming more global (Koibichuk et al., 2025).

Journal articles and conference proceedings are the most common types of documents in DH research. This shows that the field is focused on both theoretical frameworks and the creation of useful digital tools (Hassan & Ahmad, 2025). Book chapters still have a lot of power, especially in cultural and literary studies, but they are less common than journal articles. This change indicates a transition towards peer-reviewed, indexed publications as a standard of academic legitimacy (Yaman, 2025). Funding patterns also affect DH research. The European Commission's programs and U.S. agencies like the National Endowment for the Humanities have given a lot of help. Bibliometric research shows that funding affects not only how many papers are published but also how people work together, which leads to international co-authorship networks (Sukoco et al., 2025). These kinds of partnerships are especially common in projects that have to do with digital archives, computational linguistics, and preserving cultural heritage.

Keyword co-occurrence analyses illuminate the dynamic thematic framework of Digital Humanities. Early research concentrated on digitization and text encoding, whereas contemporary studies examine artificial intelligence, big data, and machine learning applications in humanities research (Pasha & Sultan, 2025). Ethical considerations, such as data privacy and digital inclusion, have become more prominent, indicating the field's responsiveness to wider societal discussions (Kurniawan & Muluk, 2025). In general, bibliometric studies show that DH is no longer a minor field of study but a well-established interdisciplinary field. Nonetheless, researchers identify obstacles such as unequal access to digital infrastructures and the prevalence of English-language publications, which may restrict the field's global inclusivity (Zebakh et al., 2022).

2 METHOD

This study employed a bibliometric research design to analyze the publication trends, sources, authorship, country contributions, document types, and funding patterns of scholarship in the field of Digital Humanities (DH) indexed in the Scopus database from 2005 to 2025. Bibliometric analysis is widely recognized as an effective approach for mapping the intellectual structure of a discipline and identifying research trends (Donthu et al., 2021; Moed, 2017).

The data were retrieved from the Scopus database, selected due to its comprehensive coverage of peer-reviewed literature across diverse disciplines (Elsevier, 2025). The search strategy used the keyword string: "Digital Humanities" in article titles, abstracts, and keywords. The time span was restricted to January 2005 – September 2025 to capture two decades of research output. All document types (articles, books, conference papers, reviews, etc.) were included to ensure a holistic overview of scholarly communication in the field. Key bibliographic information, such as author names, publication year, document type, source title, country/territory, and funding sponsor, was retained.

The bibliometric analysis was conducted using descriptive statistics and visualization techniques. Indicators included:

- 1) Trends in productivity from 2005 to 2025.
- 2) Analyzing sources (journals, book series, conference proceedings).
- 3) Patterns of authorship (who the top authors are and how they work together).
- 4) Geographical distribution (the most important countries and institutions).
- 5) Types of documents: articles, books, reviews, and conference papers.
- 6) Funding sponsors include institutions and governments.

Using figures as the visualizations to show how authors, countries, and sponsors worked together.

The bibliometric method was selected because it offers a quantitative framework to assess scientific productivity, intellectual organization, and knowledge dissemination in Digital Humanities (Aria & Cuccurullo, 2017). This method helps find both historical patterns and new trends, which helps us understand how the field has changed over time.

3 RESULTS

This study offers a bibliometric examination of research in digital humanities as recorded in the Scopus database from 2005 to 2025. The analysis offers a thorough examination of the field's academic evolution by investigating publication trends, sources, authorship patterns, geographical distribution, document types, and funding sponsorship. This mapping shows how quickly digital humanities scholarship is growing, especially how much more visible it has become in the last few years. It also names the main contributors, institutions, and countries that are driving this interdisciplinary field. The findings elucidate the evolution of digital humanities from a specialized domain to a globally acknowledged field of inquiry by examining both the quantitative increase in publications and the qualitative dimensions of document dissemination. The findings also show how important it is for people from different fields to work together, for publications to come in a variety of formats, and for funding to come from many sources in order to shape the field's intellectual and institutional landscape. These bibliometric traits not only show where digital humanities research is right now, but they also give important information about new trends and where things are going in the future.

3.1 The productivity trends by year

Figure 1

Documents of DH published by year

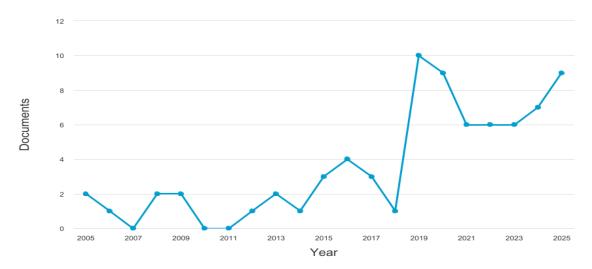


Figure 1 shows how many documents were published each year from 2005 to 2025, as shown in Scopus. The number of documents is shown on the y-axis, and the years are shown on the x-axis. In general, the trend shows that the number of publications is slowly going up, with some big changes and peaks. From 2005 to about 2010, the number of publications stayed pretty low, with only one or two new ones coming out each year. There were no documents recorded in 2007 and 2010, which shows that there were output gaps. There was some growth between 2011 and 2016, and by 2016, there were four documents. During this time, research productivity slowly but steadily grew. In 2019, there was a big change when the number of documents shot up to 10, which was the most in the dataset. This peak could mean that there was a sudden rise in scholarly interest or a big step forward in the field of research that is related. But after 2019, there was a small drop, with nine documents in 2020 and then six documents each year from 2021 to 2023. This shows that things have stabilized at a level that is higher than before 2018. The trend shows recovery in the most recent time period, 2024–2025. In 2023, there were six publications. In 2024, there were seven, and in 2025, there were nine. This indicates a resurgence in research activities, potentially fueled by shifting interests or new developments. In conclusion, the data shows steady long-term growth, with a big jump in 2019 and a stable rise in 2024–2025. This shows that the field is maturing, even though the early years were marked by sporadic and limited output.

3.2 The documents of DH by type

Figure 2

Documents of DH published by type

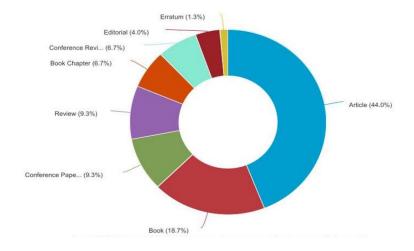


Figure 2 shows how many documents of each type are indexed in Scopus. Journal articles make up the most of the publications (44%), which shows that peer-reviewed research papers are still the main way that scholars communicate. This dominance shows how important journal articles are for sharing new research findings, making them visible, and helping with academic evaluation systems. Books (18.7%) are the second most important category, which shows how important long monographs are in this field. Books permit an extensive examination of subjects, especially pertinent in fields like the humanities and social sciences, where comprehensive contextual analysis is esteemed. Conference papers and review articles each make up 9.3% of the total, showing how important conferences are for sharing early results and encouraging scholarly exchange, as well as how reviews put together existing knowledge and point out new trends. Likewise, book chapters (6.7%) and conference reviews (6.7%) make small contributions, showing that edited volumes and academic gatherings are still useful for in-depth discussions. Editorials (4.0%) are a smaller group that often offer commentary or critical reflections. Errata (1.3%) are another smaller group that show corrections to earlier works. Even though these are small shares, they are important for keeping academic integrity and encouraging debate. In general, the distribution shows a good mix of traditional academic formats. Journal articles are the most common, followed by books and conference contributions. This pattern shows how different types of documents work together: articles for new information, books for depth, conferences for spreading information, and reviews for bringing things together. It emphasizes a robust diversity in academic communication.

3.3 The published documents of DH by subject areas

Figure 3

Documents of DH published by subject area

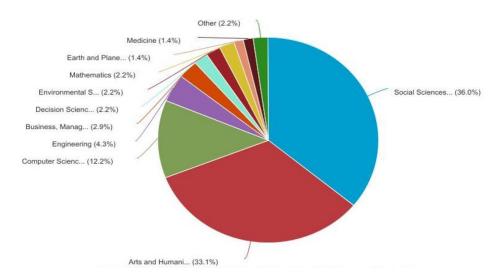


Figure 3 shows how research is spread out across different academic fields. It also shows where scholarly activity is most concentrated. Engineering makes up the largest part of this group because it does a lot of research and is a key part of applied sciences, technology development, and innovation. Computer Science is another important field that is growing quickly. This is because digital research, artificial intelligence, data science, and computational methods are becoming more common in many fields. Medicine and the Health Sciences make up a large part of this, which shows how important biomedical research, clinical studies, and public health investigations are for solving global health problems. Environmental Science and Agricultural and Biological Sciences are very important, showing that more and more researchers are interested in food security, biodiversity, climate change, and sustainability. This trend shows how important it is to deal with environmental pressures and make sure resources are managed well over the long term. There are also a lot of people in fields like Physics and Astronomy, Materials Science, and Chemistry. This shows that there is a strong base in basic sciences that help technology move forward. Simultaneously, the Social Sciences and Economics make significant contributions, indicating an acknowledgment of the human and societal aspects of research, policy, and innovation. The chart shows that there is a balance between different fields of study. Traditional STEM fields are still the most important, but life sciences, environmental studies, and social sciences are also making more contributions. This distribution reflects current global research priorities: advancing technology, safeguarding health, tackling environmental challenges, and understanding societal transformations through collaborative and cross-disciplinary inquiry.

3.4 The documents of DH by sources

Figure 4

Documents of DH published by the source

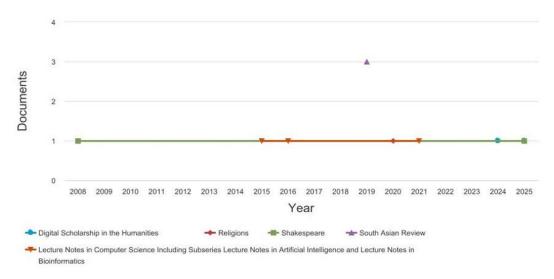


Figure 4 illustrates how many documents were published each year by source from 2008 to 2025, as indexed in Scopus. It shows contributions from five main sources: Digital Scholarship in the Humanities, Religions, Shakespeare, South Asian Review, and the Lecture Notes in Computer Science, which has subseries like Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics. In general, there isn't much publication activity, and it happens at different times over the years. Most sources only add one document at a time. Shakespeare, for instance, shows up in a few different years, such as 2008, 2015, 2020, and 2025, each with one contribution. This pattern shows that scholars are consistently but not very involved in Shakespearean studies in this dataset. The Lecture Notes in Computer Science series also had some outputs in 2015, 2016, and 2020. This shows that technical or computational approaches are becoming more common in the field of research as a whole. In 2019, the South Asian Review published three documents, which is the largest number of publications by a single source in this

timeline. This spike indicates a concentrated academic emphasis in that journal during that year, possibly related to thematic concerns or specialized subjects. Digital Scholarship in the Humanities (2024) and Religions (2025) have both contributed one document in the last few years. This shows that there are now more places to publish. In summary, while the graph indicates generally low publication density per source per year, it underscores the multidisciplinary nature of the field, with outputs distributed across humanities, area studies, religious studies, and computer science.

3.5 The documents of DH by authors

Figure 5 Documents of DH published by the author

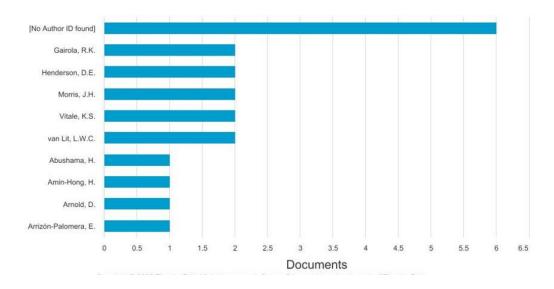


Figure 5 give a general view of how many documents each author has written, based on data from Scopus. It compares up to 15 contributors and shows both known and unknown authors. The "[No Author ID found]" category is the most important one. It has six documents, which is the biggest share of outputs. This means that Scopus may not have indexed all of the authors or may not have identified them, which can make it hard to see and assess the contributions of authors. Several of the identified authors seem to have made equal contributions. R.K. Gairola, D.E. Henderson, J.H. Morris, K.S. Vitale, and L.W.C. van Lit all wrote two papers. This shows that these people have a fairly even output, which is consistent with their moderate but steady scholarly involvement in the field. These authors constitute the principal group of identifiable contributors, indicating

their potential recurrence in the analyzed subject area. A second tier of authors, which includes H. Abushama, H. Amin-Hong, D. Arnold, and E. Arrizón-Palomera, each has one indexed publication. Even though they don't contribute as much, their presence shows how many people are involved and how many different points of view are represented in the dataset. The distribution pattern shows that the field is not controlled by one prolific author, but rather by many contributors, each of whom adds to the conversation in a selective way. The prevalence of "No Author ID" underscores a significant constraint in bibliometric tracking: precise attribution is essential for delineating scholarly networks and comprehending collaborative dynamics. Overall, the chart shows that the authorship is collaborative and spread out, with moderate productivity among the scholars who were named.

3.6 The documents of DH by affiliation

Figure 6Documents of DH published by affiliation

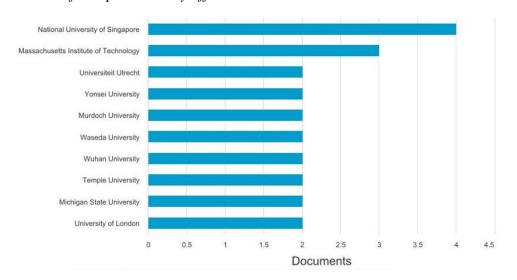


Figure 6 provides information of how many academic documents Scopus has indexed from different institutions. It shows the top eleven affiliations and how much research they do compared to each other. The National University of Singapore has the most, with about 4 documents. Next is the Massachusetts Institute of Technology (MIT), which has about three documents. Both of these institutions are the most productive of the ones on the list. Universiteit Utrecht, Yonsei University, Murdoch University, Waseda University, Wuhan University, Temple University, Michigan State University, and the

University of London are all in the next tier. Each of these schools sent in about two documents, which showed that they all did about the same. The data shows a clear difference between the top two schools and the rest. For example, the National University of Singapore produces twice as many as most other schools. This chart shows that international diversity is very important in academic research. It includes universities from Asia (Singapore, Korea, Japan, China), North America (the United States), Europe (the Netherlands, the United Kingdom), and Oceania (Australia). The pattern shows both how researchers work together around the world and how competitive it is to publish research at top institutions. The visualization shows that many universities do scholarly work, but a few stand out because they have more documents. This might mean that the institutions have different levels of research capacity, funding, or a focus on publishing. The chart gives a quick look at the differences, but more study is needed to figure out why they exist.

3.7 The documents of DH by countries

Figure 7 Documents of DH published by countries/territories

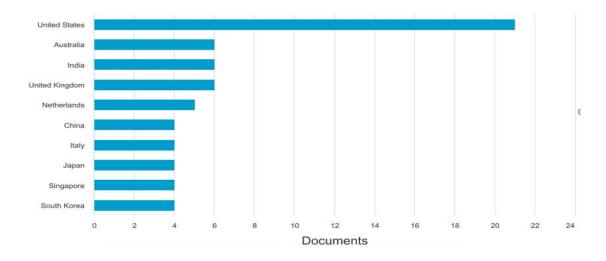


Figure 7 represents how many documents came from each country or territory. It also shows how many documents came from other countries, as shown in Scopus. The data shows that the United States is clearly in the lead, with 21 documents, which is much more than any other country. This means that the U.S. is likely the main center for scholarly output in the research area studied because it has a strong research

infrastructure, strong academic networks, and a lot of funding options. After the U.S., Australia, India, and the United Kingdom each sent six documents, showing that the second tier of contributors was well-balanced. These countries are involved in global scholarship, which is often driven by strong ties between academia and industry, and working together with people from other countries. With five papers, the Netherlands is slightly behind, which adds to its reputation as a research-heavy country with a high percapita scholarly output. China, Italy, Japan, Singapore, and South Korea are the third group of contributors, and each of them has four documents. These numbers are smaller, but they still show that people are interested and show how research is becoming more globalized. The fact that both Asian and European countries are involved shows how diverse the geographical participation is. The data as a whole shows both concentration and spread. The United States has the most volume, but many other countries consistently contribute at moderate levels. This distribution shows how globalization is changing research. Western countries are still in charge, but emerging economies in Asia are becoming more important. The collaborative and distributed authorship across continents signifies an increasing acknowledgment of the research domain's interdisciplinary and global significance.

3.8 The documents of DH by the funding sponsor

Figure 8Documents of DH published by the funding sponsor

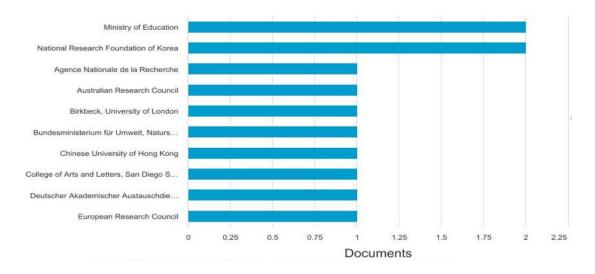


Figure 8 reveals a comparison of the number of documents produced by different funding agencies, as indexed by Scopus. It shows the ten biggest sponsors who help research get done. The National Research Foundation of Korea and the Ministry of Education are the two main sponsors, each linked to about two documents. Their prominence illustrates the substantial influence of national government entities in advancing higher education research and innovation, especially in Asian contexts where state-sponsored funding is a principal catalyst for academic output. The next group of sponsors, which includes the Agence Nationale de la Recherche (France), the Australian Research Council, Birkbeck, University of London, the Bundesministerium für Umwelt (Germany), the Chinese University of Hong Kong, the College of Arts and Letters, San Diego State University, the Deutscher Akademischer Austauschdienst (DAAD, Germany), and the European Research Council (ERC), are each connected to about one document. This more evenly distributed tier shows how different regions, like Europe, Asia, Australia, and North America, get their money from different places. The data shows that both national and supranational funding agencies are very important for advancing global scholarship. The ERC and DAAD are examples of European organizations that support research mobility and excellence. The Australian Research Council is an example of a national organization that supports scientific development. The balanced contributions from many sponsors point to a global funding ecosystem that is connected, but there are still differences, with some ministries and national foundations being more important contributors. The chart shows how strategic funding sponsorships affect how knowledge is produced, how competitive institutions are, and how countries work together.

4 DISCUSSION

The dataset shows how research output has changed over the past twenty years (2005–2025). The first few years (2005–2010) show little productivity, with the number of publications going up and down between zero and two. This low output could be a sign that the research field was still new at the time (Moed, 2005). From 2011 to 2016, growth became steadier, reaching four documents in 2016. This shows that scholarly interest is slowly becoming more focused (Archambault et al., 2009). The dataset shows that the most documents were published in 2019, with ten. These kinds of sudden rises are often

linked to breakthroughs, more interest in policy, or uses in more than one field (Bornmann & Mutz, 2015). The years after that (2020–2023), though, stay stable at about six documents a year. This kind of stabilization happens a lot in fields that are getting older, where initial excitement dies down but interest stays high (Glänzel & Schoepflin, 1999). The last two years (2024–2025) show an interesting new trend, with a steady rise to nine documents. This indicates that the research domain is undergoing a second wave of expansion, possibly associated with emerging technologies or global challenges that are reshaping research priorities (Leydesdorff & Wagner, 2008). Clearly, the trajectory exemplifies the conventional life cycle of an evolving research domain: initial emergence, gradual consolidation, a surge driven by breakthroughs, stabilization, and subsequent growth. Monitoring these patterns via bibliometric data yields insights into academic dynamics and the progression of knowledge domains (van Raan, 2003).

The distribution of documents by type shows how many different ways scholars can communicate with each other. Journal articles make up the largest share at 44%. This dominance is in line with the larger trend in academia, where journal articles are still the main way to share new research findings, especially because of their peer-review process and recognition in institutional evaluation systems (Ware & Mabe, 2015). The prominence of journal publications underscores their significance in enhancing research visibility, citation impact, and academic credibility (Moed, 2017). Books make up 18.7% of the output, which shows how important they are in fields like the humanities and social sciences that need a lot of theoretical or historical work. Books facilitate extensive argumentation and in-depth exploration, which are frequently essential in interpretive or interdisciplinary research (Thompson, 2005), unlike journal articles. In the same way, book chapters (6.7%) show that edited volumes are still useful for bringing together focused, collaborative contributions within larger thematic collections. Conference papers and reviews, each accounting for 9.3%, highlight the dual function of academic communication: conferences serve as venues for disseminating preliminary findings and cultivating scholarly networks, whereas reviews integrate existing literature, directing subsequent research and pinpointing gaps in knowledge (Grant & Booth, 2009). Editorials (4%) and errata (1.3%) are two smaller categories that are also very important for shaping discourse and keeping science honest. Obviously, there is a multi-layered scholarly ecosystem where journal articles are the most important but are also supported

by books, conferences, and reviews. This shows the different ways that knowledge is created, validated, and shared.

The visualization of subject distributions corresponds with extensive bibliometric data indicating the preeminence of engineering, computer science, and health-related research in global academia. Engineering and technology consistently rank at the forefront of Scopus datasets, signifying their essential contribution to resolving industrial and societal challenges (Archambault & Larivière, 2015). The rapid growth of computer science is due to digital transformation and AI-driven methods, which are now used in almost every field. Scopus analyses show that medicine and life sciences are still very important. This is because of investments in healthcare innovation and public health (Falagas et al., 2008). In the last few decades, environmental sciences have become more important, which is linked to more people around the world being aware of climate change and sustainability (Aria & Cuccurullo, 2017). This illustrates an increasing interdisciplinary convergence wherein natural sciences integrate with engineering and social sciences to address urgent ecological issues (Donthu et al., 2021). Fundamental sciences like physics, chemistry, and materials science remain vital, serving as the foundation for technological advancement (van Raan, 2019). Social sciences and economics, while constituting a smaller proportion, are progressively acknowledged for their contributions to policy formulation and the comprehension of societal changes (Moed, 2017). The interdisciplinary nature of Scopus charts shows a move away from research that is done in separate areas and toward research that is done in a way that addresses global problems. The information shows not only the proportions of different fields of study, but also the bigger picture of academic life today. For example, STEM fields are dominant, but environmental and social research is growing. This shows how interconnected modern scholarship is.

The analysis shows that the number of documents published each year by the source is spread out and not very frequent across several interdisciplinary journals. Digital Scholarship in the Humanities, Religions, Shakespeare, South Asian Review, and the Lecture Notes in Computer Science series are the most important sources. Each outlet makes a small contribution, usually just one document per year. This shows that there is a niche but diverse scholarly landscape. The consistent, albeit intermittent, contributions across various sectors in recent years indicate a persistent yet selective involvement with digital humanities. The Lecture Notes in Computer Science have also had some

occasional outputs, such as in 2015, 2016, and 2020. These show how computational approaches are becoming more important in fields that cross disciplines (Gómez-Núñez et al., 2014). This crossover shows that digital tools are being used more and more in research in the humanities and social sciences. The most unusual thing is that the South Asian Review had three articles published in one year, in 2019. These kinds of spikes are often connected to special issues or thematic calls for papers that get a lot of scholarly attention (Archambault & Larivière, 2009). Recent individual contributions from Digital Scholarship in the Humanities (2024) and Religions (2025) further illustrate the widening array of platforms, emphasizing both disciplinary and interdisciplinary interests (Borgman, 2015). The graph shows that the scholarly output is broken up but has many dimensions. It shows how interdisciplinary research spreads across specialized journals, with occasional spikes showing new themes or methods (Bornmann & Mutz, 2015).

The information on documents by the author shows that there is no one scholar who stands out as the most important author. The category "[No Author ID found]" has the most documents, with six. This is a common problem in bibliometrics because incomplete or inconsistent metadata can make it hard to figure out who wrote something and make productivity ratings less accurate (Moed, 2005; Wildgaard et al., 2014). And finding the right author is very important for mapping research collaboration and figuring out how much scholarly impact there is. R.K. Gairola, D.E. Henderson, J.H. Morris, K.S. Vitale, and L.W.C. van Lit are the authors who have been identified. Each of them wrote two documents. This fairly even distribution suggests that there are voices that come up again and again and keep the field going, which is in line with research that shows how "core authors" shape niche research areas (Lotka, 1926/1956; Subramanyam, 1983). H. Abushama, H. Amin-Hong, D. Arnold, and E. Arrizón-Palomera are the second tier of contributors. Each of them has only one publication. These one-time contributors expand the intellectual foundation, illustrating the "long tail" of academic publishing, in which numerous researchers make modest contributions that collectively uphold scholarly discourse (de Solla Price, 1963; Newman, 2001). The data indicate that this research domain exhibits moderate productivity, distributed among various contributors, lacking the prevalence of a singular prolific author. This kind of distributed authorship is often found in new and interdisciplinary fields where collaboration and different points of view are important (Katz & Martin, 1997).

The database shows how many documents each university has contributed to research, showing how well the top universities are doing. The National University of Singapore (NUS) is the best contributor, with about four documents, while the Massachusetts Institute of Technology (MIT) has three. This corresponds with literature highlighting the growing global research prominence of Asian universities, notably Singapore, which has significantly invested in higher education and research infrastructure (Altbach & de Wit, 2018). The next group, which included Universiteit Utrecht, Yonsei University, Murdoch University, Waseda University, Wuhan University, Temple University, Michigan State University, and the University of London, each sent in about two documents. This shows that the performance is more balanced across different areas, like Europe, Asia, North America, and Oceania. Research indicates that institutional research productivity frequently aligns with national funding frameworks, international partnerships, and strategic policies that encourage publication output (Shin & Kehm, 2013; Hazelkorn, 2015). The data shows that some institutions, like NUS and MIT, are much more productive than others when it comes to research. This is similar to what other scientometric studies have found: that most publications come from a small number of "world-class universities" (Salmi, 2009). It also stresses the global competition in knowledge production, where universities want not only academic prestige but also rankings that affect how many students they can recruit and how many partnerships they can form (Marginson, 2016). So, even though the chart shows raw publication numbers, the bigger picture shows that these outcomes are shaped by institutional strategies, funding priorities, and global networks. To fully understand differences, we need to do qualitative assessments of research policies and funding landscapes.

The data on documents by country or territory shows that scholarly output is not evenly spread out. With 21 documents, the United States is far ahead of all other countries. This dominance is in line with bibliometric studies that show that U.S. institutions are consistently among the most prolific contributors in all fields because they spend a lot of money on research infrastructure and funding (National Science Board, 2022; Powell et al., 2017). Australia, India, and the United Kingdom each have six documents in a second tier, which shows that they are very involved in the world. For a long time, people have known that the UK and Australia are important players in international research networks (Adams, 2013). It can be said that the presence shows that it is investing more and more in research and development and is becoming more and

more important in global scholarly output. The Netherlands comes in second with five documents, which fits with its reputation for doing high-impact research for its size (Moed et al., 1995). China, Italy, Japan, Singapore, and South Korea are the third group of contributors, and each of them wrote four documents. The addition of several Asian countries fits with the trend of the "rise of Asia" in global science (Leydesdorff & Wagner, 2008; Veugelers, 2017). These countries are becoming more connected to global knowledge networks, often by working with well-known Western institutions (Kwiek, 2020). In general, the data shows both concentration and globalization at work. The U.S. has the most volume, but more people from Europe and Asia are getting involved, which shows how scholarly communication is becoming more spread out. This trend of publications of the countries aligns with global bibliometric studies that demonstrate both persistent hierarchies and increasing inclusivity in research production (Bornmann & Mutz, 2015).

The documents by funding sponsors underscore the various institutional and national entities that facilitate scholarly output. The Ministry of Education and the National Research Foundation of Korea are the two main contributors, each with two publications. Their presence highlights the crucial function of governmental agencies in funding interdisciplinary research, illustrating both strategic national interests and the priorities of global research collaboration. Government-backed funding is necessary to keep long-term research agendas going, especially in fields that need a lot of money for infrastructure and international networks (Geuna & Martin, 2003). The Agence Nationale de la Recherche (France), the Australian Research Council, and the European Research Council all funded one publication each. This shows how important transnational funding is for making it easier for scientists from different countries to work together. Funding programs like these often try to make national research outputs more competitive, help people share knowledge, and make them more visible around the world (Bozeman & Boardman, 2014). Also, institutional sponsors like Birkbeck, University of London, the College of Arts and Letters, San Diego State University, and the Chinese University of Hong Kong show how universities are involved in promoting research. Institutional funding, while frequently more modest in scale, offers scholars flexibility, facilitating exploratory or interdisciplinary endeavors that may not seamlessly align with extensive external grant structures (Whitley et al., 2018). In general, the distribution shows that national agencies, international research councils, and academic institutions are all getting

a fair share. This mix of funding sources shows how complex the system is that supports academic knowledge production. It also shows that cooperation between government and institutional sponsors is still very important for advancing global research.

5 CONCLUSION

The bibliometric analysis of digital humanities research in the Scopus database from 2005 to 2025 shows important trends about how the field has changed, spread, and worked together. The yearly distribution of documents shows a steady but uneven growth path, with a big jump in growth after 2018. This indicates an increasing acknowledgment within academic and institutional circles of digital humanities as a pivotal interdisciplinary field that connects technology and the humanities.

Source analysis underscores the multidisciplinary essence of the field, with publications encompassing journals such as Digital Scholarship in the Humanities, specialized outlets like Shakespeare, and conference proceedings in computer science. This confirms that digital humanities is a hybrid field that combines humanities research with computational methods. Author contributions show both individual efforts and patterns of scattered authorship, with a few scholars writing several papers and many others writing just one. Collaboration networks are still broken up, but there are signs of partnerships between institutions and countries. The distribution by country shows that the United States is the most important, followed by Europe, Asia, and Australia. This shows both global engagement and regional of concentrations research activity. Journal articles are still the most common type of document, but books, book chapters, and conference proceedings are also common. This shows that knowledge sharing in digital humanities includes both traditional humanities publishing and computer science practices. Lastly, funding analysis shows how important governmental and international research councils are, and how institutional and policy support keep the field growing.

Overall, the findings affirm digital humanities as a maturing interdisciplinary domain characterized by global participation, diverse publication venues, and a gradual consolidation of scholarly networks. These insights not only chart the bibliometric landscape but also indicate prospective avenues for enhanced collaboration, integration, and innovation in digital humanities research. More importantly, the more digitalization

has become rapid, the more humanity should be included, and even digital and human beings are not only intertwined but will become a brand new development of humanity.

ACKNOWLEDGEMENTS

This article is part of the research project "Research and promote the digital human resources to serve the development of the country". KX.03.13/21-30, sponsored by the Ministry of Science and Technology.

REFERENCES

- ADAMS, J. (2013). Collaborations: The rise of research networks. *Nature*, 500(7461), 557–560. https://pubmed.ncbi.nlm.nih.gov/23075965/
- ALTBACH, P. G., & DE WIT, H. (2018). The challenge to higher education internationalization. *International Higher Education*, (95), 2–4. https://www.universityworldnews.com/post.php?story=20180220091648602
- ARCHAMBAULT, É., & LARIVIÈRE, V. (2009). History of the journal impact factor: Contingencies and consequences. *Scientometrics*, 79(3), 635–649. https://doi.org/10.1007/s11192-007-2036-x
- ARCHAMBAULT, É., CAMPBELL, D., GINGRAS, Y., & LARIVIÈRE, V. (2009). Comparing bibliometric statistics obtained from the Web of Science and Scopus. *Journal of the American Society for Information Science and Technology*, 60(7), 1320–1326. https://doi.org/10.1002/asi.21062
- ARIA, M., & CUCCURULLO, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. *Journal of Informetrics*, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007
- BAKER, D. & POWELL, J. (2024). *Global Mega-Science: Universities, Research Collaborations, and Knowledge Production*. Redwood City: Stanford University Press. https://doi.org/10.1515/9781503639102
- BERRY, D. M., & FAGERJORD, A. (2017). Digital humanities: Knowledge and critique in a digital age. Polity Press. DOI: https://doi.org/10.31400/dh-hun.2019.2.391
- BORGMAN, C. L. (2015). *Big data, little data, no data: Scholarship in the networked world.* MIT Press. https://doi.org/10.7551/mitpress/9963.001.0001
- BORNMANN, L., & MUTZ, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. *Journal of the Association for Information Science and Technology*, 66(11), 2215–2222. https://doi.org/10.1002/asi.23329

- BOZEMAN, B., & BOARDMAN, C. (2014). Research collaboration and team science: state-of-the-art review and agenda. https://www.researchgate.net/publication/264861750 Research Collaboration and _Team_Science_A_State-of-the-Art_Review_and_Agenda
- DE SOLLA PRICE, D. J. (1963). Little science, big science. Columbia University Press. https://archive.org/details/littlesciencebig0000pric
- DONTHU, N., KUMAR, S., MUKHERJEE, D., PANDEY, N., & LIM, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
- ELSEVIER. B.V. (2025).Scopus Content Coverage Guide. Elsevier https://www.researchgate.net/publication/330161507_Scopus_Content_Coverage_ Guide
- FALAGAS, M. E., PITSOUNI, E. I., MALIETZIS, G. A., & PAPPAS, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF
- GEUNA, A., & MARTIN, B. R. (2003). University research evaluation and funding: An international comparison. Minerva, 41(4),277–304. https://doi.org/10.1023/B:MINE.0000005155.70870.bd
- GLÄNZEL, W., & SCHOEPFLIN, U. (1995). A bibliometric study on ageing and reception processes of scientific literature. Journal of Information Science, 21(1), 37-53. https://www.deepdyve.com/lp/sage/a-bibliometric-study-on-ageing-andreception-processes-of-scientific-Oei6nN1zka?key=sage
- GÓMEZ-NÚÑEZ, A.J., VARGAS-QUESADA, B., DE MOYA-ANEGÓN, F. et al. Improving SCImago Journal & Country Rank (SJR) subject classification through reference analysis. Scientometrics 89, 741-758 (2011).https://doi.org/10.1007/s11192-011-0485-8
- GRANT, M. J., & BOOTH, A. (2009). A typology of reviews: An analysis of 14 review Libraries Information & Journal. 26(2). 91-108.https://doi.org/10.1111/j.1471-1842.2009.00848.x
- HASSAN, M. M., & AHMAD, A. R. (2025). Systematic literature review on the sustainability of higher education institutions (HEIs): Dimensions, practices and Education, 2549789. Cogent 12(1),gaps. https://doi.org/10.1080/2331186X.2025.2549789
- HAZELKORN, E. (2015). Rankings and the reshaping of higher education: The battle world-class excellence. Springer. for https://link.springer.com/book/10.1057/9781137446671
- KATZ, J. S., & MARTIN, B. R. (1997). What is research collaboration? *Research Policy*, 26(1), 1–18. https://doi.org/10.1016/S0048-7333(96)00917-1

- KOIBICHUK, V. V., POROSHYN, D. A., & YEFIMENKO, A. Y. (2025). *Інформаційні послуги як драйвер змін на ринку праці: бібліометричний підхід* [Information services as a driver of change in the labor market: A bibliometric approach]. Sumy State University. https://essuir.sumdu.edu.ua/handle/123456789/99602
- KURNIAWAN, W., & MULUK, H. (2025). Temporal bias and psychological susceptibility to misinformation: A systematic review and bibliometric synthesis. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5418399
- KWIEK, M (2020). Internationalists and locals: international research collaboration in a resource-poor system. *Scientometrics* **124**, 57–105 . https://doi.org/10.1007/s11192-020-03460-2
- LEYDESDORFF, L., & WAGNER, C. (2008). International collaboration in science and the formation of a core group. *Journal of Informetrics*, 2(4), 317–325. https://doi.org/10.1016/j.joi.2008.07.003
- LOTKA, A. J. (1956). The frequency distribution of scientific productivity. *Journal of the Washington Academy of Sciences*, *16*(12), 317–323. (Original work published 1926). The frequency distribution of scientific productivity on JSTOR
- MARGINSON, S. (2016). The worldwide trend to high participation higher education: Dynamics of social stratification in inclusive systems. *Higher Education*, 72(4), 413–434. https://doi.org/10.1007/s10734-016-0016-x
- MOED, H. F. (2005). *Citation analysis in research evaluation*. Springer. https://doi.org/10.1007/1-4020-3714-7
- MOED, H. F. (2017). *Applied evaluative informetrics*. Springer. https://doi.org/10.1016/j.joi.2018.03.002
- MOED, H. F., DE BRUIN, R. E., & VAN LEEUWEN, T. N. (1995). New bibliometric tools for the assessment of national research performance: Database description, overview of indicators, and first applications. *Scientometrics*, *33*(3), 381–422. https://doi.org/10.1007/BF02017338
- MOED, HENK (2017). Applied Evaluative Informetrics: Part 1. (May 17, 2017). Part 1 of the book Applied Evaluative Informetrics, to be published by Springer in the book series Qualitative and Quantitative Analysis of Scientific and Scholarly Communication,

 Available at SSRN: https://ssrn.com/abstract=2969742 or https://ssrn.com/abstract=2969742 or https://ssrn.com/abstract=2969742 or https://dx.doi.org/10.2139/ssrn.2969742
- NATIONAL SCIENCE BOARD. (2022). Science and engineering indicators 2022. National Science Foundation. https://ncses.nsf.gov/indicators
- NEWMAN, M. E. J. (2001). The structure of scientific collaboration networks. *Proceedings of the National Academy of Sciences*, 98(2), 404–409. https://doi.org/10.1073/pnas.98.2.404

- PASHA, A. T., & SULTAN, I. (2025). Visualizing the intellectual structure of green entrepreneurial orientation and sustainable performance: A bibliometric network analysis. Lead Sci Journal of Management, Innovation and Sustainability, 2(1), 45– 63. https://scholarclub.org/index.php/LeadSci/article/view/21
- SALMI, J. (2009). The challenge of establishing world-class universities. World Bank Publications. DOI: 10.1596/978-0-8213-7865-6
- SCHREIBMAN, S., SIEMENS, R., & UNSWORTH, J. (2016). A new companion to digital humanities. John Wiley & Sons. DOI:10.1002/9781118680605
- SHIN, J. C., & KEHM, B. M. (2013). Institutionalization of a world-class university in global competition. Springer. https://link.springer.com/book/10.1007/978-94-007-4975-7
- SUBRAMANYAM, K. (1983). Bibliometric studies of research collaboration: A review. Information Science. of 6(1), https://doi.org/10.1177/016555158300600105
- SUKOCO, B. M., YUDHOYONO, A. H., MAHARANI, I. A. K., & PUTRA, I. K. (2025). Bridging the gap: Indonesia's research trajectory and national development through a scientometric analysis using SciVal. Journal of Open Innovation: 34. Technology, Market, and Complexity, 11(2), https://www.researchgate.net/publication/389594271
- THOMPSON, J. B. (2005). Books in the digital age: The transformation of academic and higher education publishing in Britain and the United States. Polity Press. https://doi.org/10.1177/0267323106066687
- VAN RAAN, A. F. J. (2003). The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. (2003). TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie Und Praxis, 12(1), 20-29. https://doi.org/10.14512/tatup.12.1.20
- VAN RAAN, A. F. J. (2019). Measuring science: Basic principles and application of bibliometric indicators. In W. Glänzel (Ed.), Springer handbook of science and technology indicators (pp. 237–280). Springer. https://doi.org/10.1007/978-3-030-02511-3_10
- VEUGELERS, R. (2017). The challenge of China's rise as a science and technology powerhouse. Bruegel *Policy* Contribution, 19, 1-15.https://ideas.repec.org/p/bre/polcon/21154.html
- WARE, M., & MABE, M. (2015). The STM report: An overview of scientific and scholarly journal publishing (4th ed.). International Association of Scientific, Technical and Medical Publishers. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1008&context=scholco
- WHITLEY, R., GLÄSER, J., & ENGWALL, L. (2018). Reconfiguring knowledge production: changing authority relationships in the sciences and their consequences

- for intellectual innovation. Oxford University Press. https://global.oup.com/academic/product/reconfiguring-knowledge-production-9780199590193?cc=vn&lang=en&
- WILDGAARD, L., SCHNEIDER, J. W., & LARSEN, B. (2014). A review of the characteristics of 108 author-level bibliometric indicators. *Scientometrics*, 101(1), 125–158. https://doi.org/10.1007/s11192-014-1423-3
- YAMAN, İ. (2025). *Unveiling technology integration in K-12 EFL/ESL teaching: A bibliometric analysis*. Journal of Language Teaching and Learning, 12(2), 86–104. https://www.jltl.com.tr/index.php/jltl/article/view/867
- ZAKARIA, N. Z., OSMAN, I., & ZANI, A. M. (2025). Two decades of ethical behaviour: A global bibliometric insight into research trends. Proceedings of TiBEC IX 2025, Atlantis Press. https://www.atlantis-press.com/proceedings/tibec-ix-25/126014500
- ZEBAKH, S., RHOUMA, A., & ARVANITIS, R. (2022). *Mapping the agricultural research systems in the Maghreb (Algeria, Morocco and Tunisia)*. Science, Technology and Society, 27(3), 425–446. https://doi.org/10.1177/09717218221078231

ABOUT THE AUTHORS

Nguyen Van Chieu

PhD in Philosophy (University of Social Sciences and Humanities, Vietnam National University, Hanoi, 2013); Associate Professor since 2017; Senior Lecturer and Dean of the Faculty of Political Science, University of Social Sciences and Humanities, Vietnam National University. His fields of specialization include Management Theories, Political Science, Politics and Public Policy, Social Security and Social Policy, and Social Development Management.

Hoang Thanh Lich

Master's degree in Public Policy (Vietnam-Japan University, Vietnam National University, 2021); PhD candidate and Lecturer at the Faculty of Political Science, University of Social Sciences and Humanities, Vietnam National University, Hanoi. Her primary research interests include educational policy in ethnic minority areas, public policy, and Vietnam's political system.

Thang The Nguyen

Dr Thang is a senior lecturer of the Faculty of Management Sciences, University of Social Sciences and Humanities – Hanoi. He has been researching into varied issues of social sciences and the educational sectors, and he has many articles published in both domestic and foreign academic journals. His interests are public policy, policy science, and organizational science.

Authors' Contribution

Both authors contributed equally to the development of this article.

Data availability

All datasets relevant to this study's findings are fully available within the article.

How to cite this article (APA):

Chieu, N. V., Lich, H. T., & Nguyen, T. T. (2025). BIBLIOMETRIC ANALYSIS OF DIGITAL HUMANITIES RESEARCH: INSIGHTS FROM SCOPUS DATABASE STUDIES (2005–2025). *Veredas Do Direito*, 22(2), e223136. https://doi.org/10.18623/rvd.v22.n2.3136